

Clean Energy Communities Energy Study

Prepared for:

Town of New Lebanon - Town Garage 14755 NY-22 New Lebanon, NY 12125

Audit No: CEC400101-1-S

Submitted by:

L&S Energy Services 58 Clifton Country Road, Suite 203 Clifton Park, NY 12065

Date: 3/25/2024

For questions regarding this report, please contact <u>CEC@nyserda.ny.gov</u>.

We hope the findings of this report will assist you in making decisions about energy efficiency improvements in your facility. Thank you for your participation in this program.

NOTICE

This report was prepared pursuant to the Flexible Technical Assistance Program (Hereinafter "FlexTech") administered by the New York State Energy Research and Development Authority (hereinafter "NYSERDA"). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by NYSERDA or the State of New York. Further, NYSERDA and the State of New York make no warranties or representations, expressed or implied, as to the fitness for a particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. NYSERDA and the State of New York make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately-owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, disclosed, or referred to in this report.

State of New York

Kathy Hochul, Governor

New York State Energy Research and Development Authority

Consultant Disclaimer

The opinions expressed in this report do not necessarily reflect those of L&S Energy Services, C.J. Brown Energy P.C., The Daylight Savings Company, or Taitem Engineering P.C. (the Consultants), and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by the Consultants. Further, the Consultants make no warranties or representations, expressed or implied, as to the fitness for a particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. The Consultants make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately-owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.

This report was prepared by:

L & S Energy Services 58 Clifton Country Road, Suite 203 Clifton Park, NY 12065 (518) 383-9405

Table of Contents

Executive Summary	1
Present Energy Use and Cost Benchmarking Your Building	2 3
Project Summary Table	4
Note on Energy Project Implementation Costs Greenhouse Gas Reductions for the Recommended Measures Energy Efficiency Measure Descriptions	5 6 7
EEM-1 Interior Lighting Retrofit	7
EEM-2 Improve Temperature Control	8
EEM-3 Weather-Stripping And Caulking	9
EEM-4 Insulate Building Envelope	.10
Building Electrification Measures	.11
BE-1 Install Clean Heating System - Air Source Heat Pump	.12
Existing Conditions	.13
Lighting Systems.	.13
Water Heating System	11
Other Energy-using Systems	.14
Appendix A	.15
Equipment Inventory	15
Appendix B	.16
Energy Use and Cost Summary	16
Utility Bill Data	.16
Appendix C	.19
FEM Calculations	.19
Appendix D	.25
Assumptions/Data Used to Develop Energy and Dollar Savings Figures	25
Appendix E	.28
Clean Heating and Cooling Technology Overview	28
Appendix F	.32
Eperav Savinas Summaries	32
	.02

Executive Summary

In consideration of NYSERDA's objectives, the primary focus of this Energy Study is the evaluation of energy efficient electric building technologies. Limited opportunities that reduce fossil fuel use may be considered, however, the evaluation of new systems and equipment that utilize fossil fuels is excluded from the analysis contained herein and as such will not be recommended as energy efficiency improvements. The replacement of systems and equipment that utilize fossil fuels fossil fuels are not eligible for Clean Energy Communities funding.

This study was performed to understand how your facility is currently using energy and identify ways to reduce energy use and operating expenses.

Specific areas of concern that were identified by the owner for evaluation include envelope and HVAC.

The following energy efficiency measures (EEMs) and observations to reduce energy use were identified during the site visit:

- Lighting Install LED lights.
- Envelope Install weatherstripping and replace insulation.
- Building Electrification Install Air Source Heat Pumps

These Energy Efficiency Measures are summarized in the Project Summary Table below and discussed in more detail in the Energy Efficiency Measures section of this report.

Present Energy Use and Cost

The energy use for your facility has been compiled to calculate the Energy Cost Index and the Energy Use Intensity.

- The Energy Cost Index (ECI) is the total cost of energy divided by the conditioned floor area and is shown as dollars per square foot per year.
- The Energy Use Intensity (EUI) is the total heat content of energy divided by the conditioned floor area and is shown in units of one thousand Btus (kBtu) per square foot per year.

Energy Cost Index

Electricity	\$ 1,189	\$ 0.50	\$/sq.ft./year
Oil - No. 2	\$ 3,800	\$ 1.58	\$/sq.ft./year
Total Cost	\$ 4,989	\$ 2.08	\$/sq.ft./year

Energy Use Intensity

Electricity	28	mmBtu	11.5	kBtu/sq.ft./year
Oil - No. 2	150	mmBtu	62.7	kBtu/sq.ft./year
Total Energy Use	178	mmBtu	74.1	kBtu/sq.ft./year

Energy Cost Index \$ 2.08 /sf/yr.

Energy Use Intensity

74.1 kBTU/sf/yr.

Benchmarking Your Building

The EPA's ENERGY STAR Portfolio Manager website allows you to upload energy use information and compare your energy use to that of other buildings of similar use. Portfolio Manager generates a benchmark score that indicates your performance. A benchmark score of 50 indicates average performance while a score of 75 or higher would earn the Energy Star designation. You can use the website to track your energy use over time and document the success of your energy conservation efforts.

You can find the Portfolio Manager at:

https://www.energystar.gov/buildings/facility-owners-and-managers/existingbuildings/use-portfolio-manager

	Energy Efficiency Measures			\$	Savings & Co	ost
EEM #	Measure Status	EEM Description	Reduction in Greenhouse Gas Emissions (Lbs. CO2e/Year)	Total Annual Savings	Install Costs	Simple Payback (years)
EEM-1	R	Interior Lighting Retrofit	673	\$ 292	\$ 934	3.2
EEM-2	R	Improve Temperature Control	4,713	\$ 731	\$ 199	0.3
EEM-3	R	Weather-Stripping And Caulking	857	\$ 133	\$ 500	3.8
EEM-4	R	Insulate Building Envelope	8,935	\$ 1,386	\$ 36,033	26.0
		All Energy Efficiency Measures:	15,178	\$ 2,543	\$ 37,666	14.8
		Total of Recommended Measures:	15,178	\$ 2,543	\$ 37,666	14.8

Measure Status Explanation:

(I) - Implemented: Measure has been installed

(R) - Recommended: Energy saved with a reasonable payback (within measure life)

(NR) - Not Recommended: When payback exceeds measure life and equipment is not at end of life

(RME) - Recommended Mutually Exclusive: Energy is saved and recommended over other options for a particular measure

(ME) - Mutually Exclusive: Non-recommended option(s) to a Recommended Mutually Exclusive (RME) measure

(RNE) - Recommended Non-Energy: Recommended based on other, non-energy factors such as comfort, water savings or equipment at end of life

(RS) - Recommended for Further Study: For measures that require analysis beyond the scope of this program.

(BE) - Building Electrification: Measures that should be considered based on greenhouse gas reductions, eliminating on-site use of fossil fuels, or other sustainability factors

Building Electrification Measures			\$ Savings & Cost					
EEM #	Measure Status	Building Electrification Measure Descriptions	Reduction in Greenhouse Gas Emissions (Lbs. CO2e/Year)	Total Annual Savings	Install Costs	Simple Payback (years)	Estimated Incentives	Simple Payback after incentives
BE-1	R	Install Clean Heating System - Air Source Heat Pump	10,262	\$ 2,490	\$ 34,491	13.9	\$ 7,742	10.7
		All Measures:	10,262	\$ 2,490	\$ 34,491	13.9	\$ 7,742	10.7
		Total of Recommended Measures:	10,262	\$ 2,490	\$ 34,491	13.9	\$ 7,742	10.7

Simple Payback Period is the length of time it will take to recover the initial capital investment from the energy savings of the new equipment. The Simple Payback Period is calculated by dividing the initial installed cost by the annual energy cost savings. For example, an energy-saving measure that costs \$5,000 and saves \$2,500 per year has a Simple Payback Period of \$5,000 divided by \$2,500 or 2 years.

Note on Energy Project Implementation Costs

The "Project Costs" shown in this report for each Energy Efficiency Measure represent an initial estimate of the implementation cost. Unless otherwise noted in the Energy Efficiency Measure description, these costs reflect a preliminary estimate of material and labor. There may be other variables associated with your specific project that will impact the true project costs that the study may not capture. Other external factors that may impact true project costs and payback include material availability, vendor scheduling, access within the facility, general inflation, available measure incentives, and other unknown factors and conditions. For measures which significantly impact your building's usage, it is also important to determine any potential utility rate and/or tariff changes, those of which are beyond the scope of this report. We recommend that you seek several quotes from qualified vendors prior to implementation.

Greenhouse Gas Reductions for the Recommended Measures

Reducing your energy use will reduce the release of greenhouse gases associated with the use of fossil fuels and the production of electricity. If the measures recommended in this report are implemented, the following reductions of greenhouse gases can be expected:

Electricity				
Lioemeny	(11,782)	kWh =	(13,667)	pounds CO2 equivalent
Oil - No. 2	1,740	gal. =	39,107	pounds CO2 equivalent
			25,440	pounds CO2 equivalent
			75.2%	reduction

Emissions factors are used to translate the energy savings data from energy efficiency and renewable generation projects into annual GHG emissions reduction values. NYSERDA uses emission factors derived from U.S. Environmental Protection Agency (EPA) emission coefficients to calculate emissions from onsite fuel. The CO2e values represent aggregate CO2, CH4, and N2O emissions.

Energy Efficiency Measure Descriptions

EEM-1 Interior Lighting Retrofit

Electric Savings:	\$ 377	1,053 2.3	kWh per year kW demand
Fuel Savings:	(\$ 85)	(3.4)	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 292		
Project Cost:	\$ 93 4		
Simple Payback:	3.2	years	

Introduction:

The office and garage have fluorescent fixtures, while the seldom used cold storage area has metal halide fixtures.

Recommendation:

Replace the fluorescents with LED equivalents. The new lamps should be self-driving and the ballasts should be replaced. Corn cob LEDs lamps should be able to directly replace the metal halide. It is assumed that the town can upgrade the lighting without labor costs.

EEM-2 Improve Temperature Control

Electric Savings:	\$ O	0	kWh per year
		0.0	kW demand
Fuel Savings:	\$ 731	28.9	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 731		
Project Cost:	\$ 199		
Simple Payback:	0.3 y	/ears	

Introduction:

The thermostat controlling the oil fired furnace is kept to 67 degrees. Many highway garage buildings and equivalent buildings like firehouses can keep their heating equipment between 58 and 62 degrees when unoccupied.

Recommendation:

Install a wi-fi rated thermostat that can reduce the temperature setpoint when the staff are not in the building and when the facility is unoccupied.

Alternatively, perhaps the base temperature in the garage can be low, and when the staff know that they will work in the garage they can engage a timer to increase the temperature.

EEM-3 Weather-Stripping And Caulking

\$ O		0 0.0	kWh per year kW demand
\$ 133		5.3	MMBtu fuel per year Oil - No. 2
\$ 133			
\$ 500			
3.8	years		
	\$ 0 \$ 133 \$ 133 \$ 500 3.8	\$ 0 \$ 133 \$ 133 \$ 500 3.8 years	\$0 0 0.0 \$133 5.3 \$133 \$500 3.8 years

Introduction:

Sealing the cracks between windows and wall openings will reduce the amount of unwanted outside air infiltration into conditioned spaces. The elimination of infiltration or drafts makes occupants feel more comfortable and reduces heating and cooling costs. Caulking and weather-stripping are cost effective ways to reduce infiltration and to tighten the building envelope.

All windows and doors must be caulked and weather-stripped. Clean and inspect surfaces for damage or moisture, in order to ensure that they are in good enough condition to accept weather-stripping or caulk. Tighten door or window hardware. Remove old weather-stripping and caulk. Cut weather-stripping carefully to length and apply it to the surface. New weather-stripping should be snug, and should completely fill gaps without buckling or otherwise deforming. Open and close window or door and inspect for interference, weather-stripping damage, or other problems. Windows and doors should be able to close without excessive force.

Recommendation:

In addition to the subsequent measure, a qualified contractor should evaluate the overhead doors and windows for air leaks. This measure provides estimates of savings for adding a new door sweep and weatherstripping for the overhead door closer to the office.

EEM-4 Insulate Building Envelope

Electric Savings:	\$0	0 0.0	kWh per year kW demand
Fuel Savings:	\$ 1,386	54.9	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 1,386		
Project Cost:	\$ 36,033		
Simple Payback:	26.0	years	

Introduction:

Heat moves from areas of high temperature to areas of low temperature. As the temperature difference between a heated and an unheated space becomes greater, so does the rate of heat transfer. Insulation reduces the rate of heat transfer by filling the space with material that is less conductive than what is currently there. The effectiveness of insulation is measured by R-value, which is the resistance to heat transfer. As the R-value increases, the rate at which heat is transferred decreases.

Insulation can be installed in enclosed spaces, such as wall cavities, cathedral ceiling cavities, and floored attic cavities. It can also be installed in unfloored attics, which can accommodate greater thickness resulting in higher R-value. When insulation is combined with air sealing, convective air currents that circulate air within cavities and through insulation are reduced, which increases the effective R-value of the insulation.

Recommendation:

The existing insulation is at the end of its life and needs to be replaced with R-38 for the roof, and R-19 for the walls. Closed cell spray foam that is fire rated could be an option in this space, as well as a new liner system for the roof. New interior siding can also be installed as a thermal/vapor barrier for other types of insulation.

The estimated costs for a liner system and interior siding include removal and installation as well as the materials and labor.

Building Electrification Measures

The following measures evaluate the impact of replacing your existing fossil-fuel heating systems with clean heating and cooling systems powered by electricity. For space heating, air source heat pumps and ground source heat pumps are available in various system types to provide both heating and cooling to your building.

Fossil fuel-fired water heaters may also be replaced with heat pump water heaters to further reduce your use of fossil fuels.

When combined with renewable electricity, heat pump systems can eliminate the use of fossil fuels in your building.

See Appendix E - Benefits Of Clean Heating and Cooling (CHC) Technologies for more information on these system types.

BE-1 Install Clean Heating System - Air Source Heat Pump

Simple Payback:	13.9	years	10.7	years after incentives
Total Annual Savings: Project Cost:	\$ 2,490 \$ 34,491			
Fuel Savings:	\$ 3,902		154.4	MMBtu fuel per year Oil - No. 2
Electric Savings:	(\$ 1,412)		(12,835) 0.0	kWh per year kW demand

Introduction:

Air source heat pumps (ASHP) provide both heating and cooling using electricity to exchange energy with the outdoor air. Existing buildings may be retrofitted with various heat pump technologies to reduce or eliminate their dependence on fossil fuels for space heating. System options range from centrally-ducted cold climate air source heat pumps and mini-split heat pumps to large variable refrigerant flow systems having multiple indoor units supported by each outdoor unit.

At very cold outdoor air conditions, air source heat pumps may require supplemental heat to meet your building's heating load. Supplemental heat may be in the form of electric resistance heat or your existing fossil-fueled heating system, if it remains in service. The extent to which an ASHP system reduces your fossil fuel use will depend on the exact design and control of your new system.

Recommendation:

Replace the oil fired furnace with air source heat pumps. There is no air conditioning in the garage space, so any use would be added consumption. The calculation models the existing furnace consumption against the same efficiency (277%) of the heat pumps that are currently installed in the office/bathroom. Several larger units would need to be installed and can be mini-split systems with multiple heads. Other alternatives could be to install an air handler with ductwork.

Implement the insulation measures so that the heat pumps can be right-sized, which would save on capital costs. Further, the Energy Star rated units may be eligible for Clean Heat Program incentives through NYSEG. Installing solar panels on the roof would offset the electric costs.

Ground source heat pumps do not appear to be a good option for this building due to the large up-front cost. The highway garage may also move to a larger facility as the community grows where theoretically, the heat pumps and solar panels can follow - or be left there and leased to a local business.

Existing Conditions

The site is a highway garage. It was constructed in 1963 and is a metal building on slab. It has metal siding and a gabled metal roof. The walls are 13' high and peak at around 17'. Interior wall and ceiling insulation may be original per staff, but it may also have been installed around the 1980s as there has been several renovations over time to the heating and other systems through leftover equipment that was not removed (like ducts and chimney vents). The insulation is old and deteriorating along the walls. The roof liner system is likely compacted and needs to be replaced as well.

There are two sections 40' x 120' to the building. Half the building is cold storage and is largely unused, while the other half of the building is heated. Within the heated section is a built-up office for the Highway Supervisor, a storage closet, and a bathroom. This resides on the far wall, and the existing furnace is located on top of the storage space that is in the middle between the office in the front and the bathroom in the rear.

There are two side doors: one to the office and one to the cold storage. The office door seals fine but may need new weatherstripping eventually. The heated section has two 12' x 12' overhead garage doors. One appears to be predominately used and needs new seals and a door sweep. They have about one inch of interior foam in the core. The heated side also has six slider windows that have double pane glass for natural illumination.

The facility is open Monday through Friday from 6:30 am to 3 pm with for four total staff members.

Lighting Systems

The office has a T12 fluorescent fixture, while the garage has T5 high output fluorescent fixtures. The cold storage has 150 W Metal Halide pendants that are used seldomly. There is one side lamp over the cold storage door that doesn't appear to be used at all. All lights are on switches or pull chains.

Heating Ventilating and Air Conditioning Systems

Heating is provided by a Nortek, model OH-190 fuel oil fired furnace manufactured in 2020. It has an 81% efficiency and an output capacity of 186 Mbh. The fan blower motor is ¹/₄ hp. It is controlled by a rotary dial thermostat and kept to a constant 67 degrees.

The office and bathroom share a Mitsubishi, model MXZ-2C20NAHZ2 mini-split, cold-climate, multi-head air source heat pump with a 22 MBh cooling and heating capacity manufactured in 2021. Its efficiency is 13.5 EER, 17 SEER, and between a 2.77 COP at 17 degrees. It can heat down to -13 degrees at ³/₄ capacity and is Energy Star Rated. The unit in the office is kept to 72 degrees, while the unit in the bathroom is kept to 80 degrees to prevent pipes from freezing. There is also a strip baseboard electrical heater that is also kept on supplementing the heat pump in pipe freezing prevention.

Water Heating System

The bathroom has an Ariston six gallon on demand unit with a 1.5 kW coil.

Other Energy-using Systems

The garage has a working shop with various plug loads, while the bathroom has a sump pump and a well water pump that serves the town hall. Lastly, the office has computer equipment.

See Appendix D for further details regarding the energy calculations performed for this study.

Equipment Inventory

Heating and Air Conditioning Equipment									
Unit Type	Qty	Make/Model	Heating kBtuh	Heating Eff.	Cooling Capacity	Units	EER	Serves/Location	Year
Furnace	1	Nortek OH-190	230	81%				Garage	2020
Heat Pump	1	Mitsubishi MXZ-2C20	22	277%	22	kbtuh	13.5	Office & Bathroom	2021
Baseboard	1	N/A	3	100%				Bathroom	1963

Domestic Hot Water													
Unit Type	Unit Type Qty Make/Model Capacity Units Fuel Type Storage Capacity (gal.) Eff. Serves/Location Year												
Tankless	1	Ariston	1.5	kW	Electricity	6	100%	Bathroom					

Motors												
Unit Type Qty Make/Model HP Loading Type Hours/year Eff. Serves/Location Yea												
Furnace Blower	1		1/4									
Overhead Doors	2	Est.	1/2									

	Interior Lighting Fixtures													
	Existing Fixtures Recommended Recommended Interior Lighting Efficiency Improvements													
Line #	Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Watts /Fixt			
1 Office 1 4' 34w T12 Std. Mag. bal 2 5						No Change	LED Relamp	1	4' LED T8 2200 lu. 17W	2	34			
2	Garage	8	4' 54w T5 HLO Elec. bal.	6	351	No Change	LED Relamp	8	4' LED T5HO 3300 lu. 25.5W	6	153			
3	Cold Storage	4	150w M-H CWA bal.	1	190	No Change	LED Relamp	4	LED Corn Cob 27 Watt	1	27			

	Exterior Lighting Fixtures												
	Existing Fixtures Recommended Lighting Efficiency Improvements												
Line #	Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Watts /Fixt		
1	1 Storage Entrance 1 Unused I60 1 60 No Change LED Area Light 0												

Appendix B

Energy Use and Cost Summary

Energy Cost Index \$ 2.08 /sf/yr. Energy Use Intensity 74.1 kBTU/sf/yr.

Utility Bill Data

The following pages present the energy use and cost data for your facility and establish the value of each type of energy. Electricity is measured and billed in units of kilowatt-hours (kWh) that represent the total amount of electricity used in the billing period. Electricity may also be billed based on the highest rate of use, or peak demand, that occurred during the billing period. Electric demand is billed in units of kilowatts (kW).

Other fuels may be billed in volume units (gallons, hundred cubic feet or ccf, etc.) or based on their heat content (therms, equal to 100,000 British Thermal Units). All energy types may be converted into a common unit, such as BTUs, to facilitate analysis and comparison with other facilities. One million BTUs is abbreviated as mmBtu in this report.

ELECTRICITY CONSUMPTION AND COST ANALYSIS

Town of New Leban	ion - Town Gar	age			Utility: NYSEG							
							Account # e	nds w/ -121				
Gross Area:	2,400	s.f.					Rate: S	C NonRes				
	11,458	Btu/s.f./Yr				N	leter Charge:	\$ 33.00	/	month		
	\$ 0.50	/s.f.				Der	mand Charge:	\$ 10.85	/	kW		
	1.4	watts/s.f.					Supplier:					
	Usa	ige	Electricit	y Charges	Total							
Month	Energy	Demand	Utility	Supply	Electricity		Demand	Energy	Ī	Load	Usage	

	Δ	nnual Energy:	8.060	kWh / vear	\$ 1 189	/vear	Unit Costs			
	364	8,060	16.4	\$ 492	\$ 697	\$ 1,189	\$ 178	\$ 0.076	0.34	22
8/6/23	60	946	2.5	\$ 76	\$ 63	\$ 139	\$ 27	\$ 0.049	0.27	16
6/12/23	62	1,033	2.2	\$ 71	\$ 63	\$ 135	\$ 24	\$ 0.044	0.32	17
4/11/23	61	1,753	2.7	\$ 84	\$ 120	\$ 204	\$ 30	\$ 0.062	0.44	29
2/9/23	62	2,078	3.3	\$ 96	\$ 227	\$ 323	\$ 36	\$ 0.106	0.42	34
12/9/22	59	1,293	2.8	\$ 82	\$ 114	\$ 196	\$ 31	\$ 0.077	0.32	22
10/11/22	60	957	2.8	\$ 82	\$ 110	\$ 191	\$ 31	\$ 0.099	0.24	16
Ending	Days	kWh	kW	Cost	Costs	Cost	Cost	\$/kWh	Factor	/day

Blended \$0.147 \$/kWh Blended

Note:

The Town Office shares a meter with this building, and the bills were prorated to 20% for this report. NYSEG also bills bimonthly. Note that solar was installed towards the end of the billing period here, but according to the Enlightened software the panels had yet to start recording data until after the billing period.

ALL FUELS CONSUMPTION AND COST ANALYSIS Town of New Lebanon - Town Garage

Month	mmBtu		Cost		
	Oil - No. 2		Oil - No. 2		
Jan-23	40		\$ 1,099		
Feb-23	21		\$ 504		
Mar-23	30		\$ 722		
Apr-23	16		\$ 362		
May-23	0		\$ O		
Jun-23	0		\$ O		
Jul-23	0		\$ O		
Aug-23	0	 	\$ 0		
Sep-23	6		\$ 169		
Oct-23	1		\$ 15		
Nov-23	25		\$ 645		
Dec-23	12		\$ 285		
Total	150		\$ 3,800		
\$/mmBtu	\$ 25.27				
BTU/unit	138,000		1 mmBtu =	1,000,000	Btus
kBtu/SF/Yr.	62.7		1 kBtu =	1,000	Btus

Page 18

Appendix C

EEM Calculations

Interactions

The Energy Efficiency Measure calculations in this section are stand-alone measures that are not interacted with the other calculations. Each measure shows the energy savings that may be expected if it is the only measure to be implemented. If multiple measures will be implemented, energy savings will likely be lower than the calculations represent.

As an example, replacing an 80% efficient boiler with a 92% efficient boiler will reduce the amount of fuel required to heat the building. If the walls and roof are insulated such that the required heating energy is reduced by 30%, the new boiler will serve a smaller heating load, and the energy savings gained from the boiler replacement will be reduced by 30%.

CALCULAT	ONS	FOR INTERIOR LI	GHTIN	IG RE	TROFIT																					
EEM-1	Tow	n of New Lebanon - To	own Ga	rage			Type:	Units:	Unit cost:	BTU/unit						HVAC Adjust	tment Facto	rs								
							Oil - No. 2	gal.	\$ 3.488	138,000						Cooling	Demand	Fuel								
							Electricity	kwh	\$ 0.076	3,412						HVACc	HVACd	HVACg								
							Demand	kW	\$ 10.85	12	Months	of demand savings/year				0.00%	0.00%	-3.20%	1							
							10%	of building	is air condi	tioned																
Existing Interior	Lighting	g Systems			Recommend	led	1			Recommended Inte	erior											Ener	gy & Demar	d Calculation	IS	
					Lighting Con	trols				Lighting Efficiency	mproven	ients									Demand		Tot	al Use	Energ	zy Savings
Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	% Reduction	Present Hrs./yr.	Proposed Hrs./yr.	# Controls required	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Reflect or ?	Watts /Fixt	Project Cost	Annual Savings	kWh/yr. Savings	Payback (Years)	Present kW	Proposed kW	kW Saved	Present kwh/year	Proposed kwh/year	Controls kwh/year	Efficiency kwh/year
Office	1	4' 34w T12 Std. Mag. ba	a 2	80	No Change	0%	500	500	0	LED Relamp	1	4' LED T8 2200 lu. 17W	2		34	\$ 24	\$8	23	3.1	0.1	0.0	0.0	40	17	0	23
Garage	8	4' 54w T5 HLO Elec. bal.	. 6	351	No Change	0%	500	500	0	LED Relamp	8	4' LED T5HO 3300 lu. 25	6		153	\$ 724	\$ 266	792	2.7	2.8	1.2	1.6	1,404	612	0	792
Cold Storage	4	150w M-H CWA bal.	1	190	No Change	0%	365	365	0	LED Relamp	4	LED Corn Cob 27 Watt	1		27	\$ 186	\$ 103	238	1.8	0.8	0.1	0.7	277	39	0	238
	13		3.6	kW exis	ting				0		13		1.4	kW pro	posed					3.6	1.4	2.3	1,721	668	0	1,053
Note: bal. = balla	ist, EE =	energy efficient, STD = s	tandard	efficienc	y, mag. = mag	netic, Elec.	= electron	ic, CFL = con	npact fluore	escent lamp															1,053	kwh
SUMMARY OF S	AVINGS	S BY MEASURE TYPE:		Fixture	Energy	Savings	Demand																			
		Measure Type		Qty.	Controls kwh/year	Efficiency kwh/year	kW Savings	Project Cost	Electric Savings	Payback (Years)	Measur	Description														
EEM-1C		LED Relamp		13		1,053	2.3	\$ 934	\$ 377	2.5	Screw-in	or Socket based LED lan	nps													
				13	0	1,053	2.3	\$ 934	\$ 377																	
		Gross Energy	y Savings	s	1,053	kwh																				
		Net Energy	/ Savings	s	1,053	kwh	2.3	-24	gal.	\$ 292	net															
PAYBACK PERIO	<u>D:</u>																									
		Estimated Cost Interior	Lighting	:	\$ 934	= 3.2 year	payback																			
		Annual Energy Savings ((kWh + k	(W):	\$ 292																					

FFM-2	Town of			arage	NOL
EEIVI-Z	TOWN OF	New Leban	on - Town G	arage	
INPUT DATA:		100%	of Building to be	e Setback	
			Current	Proposed	
Heating T Setp	point:	Occupied	67	67	deg. F.
		Unoccupied	67	60	deg. F.
Cooling T Setp	oint:	Occupied	85	85	deg. F.
		Unoccupied	85	85	deg. F.
HVAC Schedul	e	Occupied	42.5	42.5	Hours per week
		Unoccupied	125.5	125.5	Hours per week
Q internal gair	ns:	Occupied	7,477	7,477	Btuh
		Unoccupied	1,629	1,629	Btuh
Q internal gair	ns:	Schedule	43	43	Hours per weel
BLC:		Occupied	1,118	1,118	Btuh/deg. F.
(excludes DOA	AS)	Unoccupied	708	708	Btuh/deg. F.
	- /	Fuel Data	Heating		
		Type:	Oil - No. 2		
		Units:	gal.		
		Unit cost:	\$ 3.488		
		BTU/unit	138,000		
	Ef	ficiency/ COP:	81.0%		
CALCULATION	IS:				
Current		Albany, 43 hr	s./week		
	O		0	11 N 11	Handler Frid
Bin Mid Pt.	Occupied	Unoccupied	Occ Net Heat	UNDCC Net Heat	Heating Fuel
	Hours	Hours	LOSS BTUH	LOSS BTUH	Use gal.
(2.5)	6	9	70,195	47,555	8
2.5	12	39	64,607	44,016	22
7.5	31	94	59,020	40,478	50
12.5	44	156	53,432	36,939	73
17.5	90	333	47,844	33,401	138
22.5	114	378	42,256	29,863	144
27.5	147	406	36,668	26,324	144
32.5	144	527	31,080	22,786	147
37.5	184	536	25,492	19,247	134
42.5 47 F	143	41/	14 216	13,709	84
47.5 52 E	191	554 136	14,310 9 779	12,170 2 622	85
57 5	100	430	3 120	5,032	40
62.5	248	715	0	1.555	10
67.5	206	420	0	0	0
72.5	151	325	0	0	0
77.5	156	258	0	0	0
82.5	106	161	(4,683)	0	0
87.5	31	20	(10,271)	(3,399)	0
92.5	7	5	(15,859)	(6,937)	0
97.5	0	1	(21,447)	(10,475)	0
102.5	0	0	(27,035)	(14,014)	0
107.5	0	0	(32,623)	(17,552)	0
112.5	0	0	(38,211)	(21,091)	0
	8,760	hours			1,119
Proposed		Albany, 43 hr	s./week		
Rip Mid Pt	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel
Bill Wild Ft.	Hours	Hours	Loss BTUH	Loss BTUH	Use gal.
(2.5)	6	9	70,195	42,601	7
2.5	12	39	64,607	39,062	21
7.5	31	94	59,020	35,524	46
12.5	44	156	53,432	31,986	66
17.5	90	333	47,844	28,447	123
22.5	114	3/8	42,250	24,909	12/
27.5	14/	400 577	30,008	21,370	120
32.5	18/	527	25 492	14 20/	124
42.5	143	417	19.904	10.755	66
47.5	191	554	14,316	7,217	60
52.5	160	436	8,728	3,678	27
57.5	178	621	3,140	140	6
62.5	248	715	0	0	0
67.5	206	420	0	0	0
72.5	151	325	0	0	0
77.5	156	258	0	0	0
82.5	106	161	(4,683)	0	0
87.5	31	20	(10,271)	(3,399)	0
92.5	7	5	(15,859)	(6,937)	0
97.5	0	1	(21,447)	(10,475)	0
102.5 107 F	0	0	(27,035)	(14,014)	0
107.5	0	0	(32,023)	(17,352)	0
112.3	8,760	hours	(30,211)	(21,091)	909
	3,700				509
			Present	Proposed	Savings
		Heating	1,119	909	210
		Annual Energ	y \$		\$ 731
	TION COST	P. DAVDACK			
INTELEIVIENIA	LION COST	C PATDALK P			
		Material			
Item		\$/unit	Labor \$/unit	Quantity	Total
Wi-fi thermos	tat	\$ 144	\$ 56	1	\$ 199
					\$0
					\$ 199
	Implementa	ation Cost:		Ś 199	= 0.3 year pa
	Annual Fre	røv Savinøs:		\$731	

EM-3	Town of New Lebanon - To	own Garage					
•		onn eurage					
PUT DA	<u>TA:</u>						
	Bldg. Volume	31,200	cubic feet		F	Present infiltrat	ion
			ACH	Period	Cu. ft./hr.	CFM	btuh/deg.
	Baseline infiltration rate		1.00	Occupied	31,200	520	562
	from heat loss study		0.25	Unoccupied	7,800	130	140
	Proposed Reductions	Crack Length	Leakage	Rate - cfh		Leakage - net d	fh
	Cubic feet per hour	lineal feet	Present	New	Present	Proposed	Savings
	Roof - Wall Joint				0	0	0
	Window Jamb to Wall				0	0	0
	Operable Window WS				0	0	0
	Door Sweeps & WS	48	60	5	1.440	120	1.320
	Fireplace			5	0	0	0
	Theplace				1 440	120	1 320
	Proposed Reductions	Air chang	es/Hour		1,110 P	ronosed infiltra	tion
	Air changes /hour	% reduction	Proposed	Period	Cu ft /br	CEM	htub/deg
	All changes/flour	/01200000	0.96	Occupied	20.000	409	E20
		470	0.96	Uppequipied	29,000	498	117
	Tatal Infilmation & Daduation	1770	0.21		0,460	100	117
	Total Inflitration & Reduction		31,200	29,880	1,320	cin savings	
	Cu.Ft./hour	Unoccupied	7,800	6,480	1,320	cth savings	
CULAT	IONS:						
kage =	1/2 x Crack Length x Leakage R	ate -or- ACH x Bu	uilding Volume				
ergy Sav	vings = (Present Leakage - New	Leakage) x Accun	n Hours x Temp	Difference x CF	2		
ergy Cos	st Savings = (Energy Savings / C	F1) x (Unit cost /	Efficiency)				
		Occupied	Unoccupied				
	T Setpoint:	67	67	°F			
	Q internal gains:	7,477	1,629	Btuh			
	BLC:	1,118	708	Btuh/°F			
	T Balance:	60.3	64.7	°F. T Balance =	T Setpoint	- (Q internal ga	ins / BLC)
	Bin Data for Albany, 43 hrs./w	veek					
	Accumulated Hours	1,444	5,221	below balance	temp.		
	Avg. OAT	37.6	40.8	°F below balar	ice temp.		
	(T Set- Avg OAT)	29.4	26.2	°F difference			
	Type:	Oil - No. 2					
	Units:	gal.					
	Unit cost:	\$ 3.488	/gal.				
	CF1	138,000	Btu/gal.				
	Efficiency:	81.0%					
	CF2	0.018	Btu/hr-°F-cfh				
		Ene	rgy Use - Btu/ye	ear	Fuel Use		
		Occupied	Unoccupied	Total	gal. / yr		
	Baseline infiltration rate	23,813,500	19,238,900	43,052,400	385		
	Proposed infiltration rate	22,806,000	15,983,100	38,789,100	347		
				Total Savings	38	\$ 133	
PLEME	NTATION COST & PAYBACK PER	RIOD:					
		Matl. & Labor	Quantity				
	Item	(\$ / lin ft)	(lin ft)	Total			
	Weather-stripping			\$ 0			
	Caulking			\$ 0			
	Air Sealing	\$ 500.00	1	\$ 500			
			-	4 = 0.0			
		Implementation	Cost:	<u>\$</u> 500	= 3.8 yea	r payback	

CALCULA	TIONS TO	INSULATE	BUILDING ENVE	LOPE	
EEM-4	Town of Ne	w Lebanon -	Town Garage		
Surface to be	insulated:	Roof	Walls		
Area.		2 530	2 147	sa ft	
Present R valı	ıe.	2,550	7.0	5910	
Revised R valu		38.0	19.0		
Present II fac	tor	0.048	0 143	Btub/sa ft-deg F	
Revised II fac	tor:	0.046	0.143	Btuh/sq ft-deg F	
Present II x A	rea	120	307	427	IIA Total preser
Proposed II v	Area	67	112	127	UA Total propo
roposed o x		07	115	100	
		Occupied	Unoccupied	Eucl Data	Hosting
	vint.		CT	Fuel Data	
Heating Setpo	int:	67	67	Type:	011 - NO. 2
Cooling Setpo	int:	85	85	Units:	gal.
Q internal gai	ns (Btuh):	7,477	1,629	Unit cost:	\$ 3.488
BLC (Btuh/de	gree F):	1,118	708	BTU/unit	138,000
T Balance (°F.):	60.3	64.7	Efficiency/ COP:	81.0%
T Balance = T	Setpoint - (Q in	ternal gains / BL	C)	EER:	
	Occupied	Unoccupied	Change in Occupied	Change in Unoccupied	Heating Sovings
Bin Mid-Pt.	Hours	Hours			riedting Savings
(2 5)	nours	nouis	17 200	17 200	gai.
(2.3)	12	39	17,209	17,209	7
7.5	31	94	14,733	14,733	16
12.5	44	156	13,495	13,495	24
17.5	90	333	12,257	12,257	46
22.5	114	378	11,019	11,019	48
27.5	147	406	9,781	9,781	48
32.5	144	527	8,542	8,542	51
37.5	184	536	7,304	7,304	47
42.5	143	55/	6,066	6,000	30
52.5	160	436	3.590	3,590	19
57.5	178	621	2,352	2,352	17
62.5	248	715	0	1,114	7
67.5	206	420	0	0	0
72.5	151	325	0	0	0
77.5	156	258	0	0	0
82.5	106	161	0 (610)	0 (610)	0
92.5	7	5	(019)	(013)	0
97.5	0	1	(3,095)	(3,095)	0
102.5	0	0	(4,333)	(4,333)	0
107.5	0	0	(5,571)	(5,571)	0
112.5	0	0	(6,809)	(6,809)	0
	8,760	hours		Energy Savings:	397
IMPLEMENTA	TION COST & F	PAYBACK PERIO	D:		\$ 1,386
		Material & Labo			
	ltem	(\$ / ca ft)	Quantity	Total	
	Roof	(, , , sq it) \$ 10.00	2 Lanuty	່ ເປໄປໄ ເຊິ່ງ ເວັດດ	
	Walls	\$ E 00	2,330	ې ۲۵,۲۶۵ د ۲۰ مې	
	vvalis	\$ 0.00 \$ 0.00	2,14/	¢0,735	
		Ş U.UU	4,077	\$0	
	Implementatio	on Cost:	\$ 36.033	= 26 year pavback	
	Annual Energy	Savings:	\$ 1,386		

CALCULATIONS TO INSTAL	L CLEAN HEATING	SYSTEM - A	IR SOURCE	HEAT PU	MP	
BE-1	Town of New Lebano	n - Town Gara	age			
			Fuel Information	<u>1</u>		
Building Information	Auto Repair			Heating	Cooling	
Location	Albany	Climate Zone 5	Type:	Oil - No. 2	Electricity	
Portion of Building HP will serve:	100%		Units:	gal.	kwh	
Building Heating Load (BHL)	78,457	BTU/h	Unit cost:	\$ 3.488	\$ 0.076	/kwh
Building Cooling Load (BCL)			BTU/unit	138,000	3,412	/kwh
BEFLHheating	1,594	Hours	Heating Eff.	81%	\$ 10.85	/kW
			CO2	22.48	1.16	lbs/unit
Existing System						
Is baseline heating system electric?		N				
Is baseline heating system fossil fue	!?	Y				
If yes, will it remain in place in the e	fficient case?	N				
Dresset Liesting System						
Present Heating System	Warm Air Furnace, Oli Fired	a < 225 kBTU/n				
Present Cooling System	hat is presently sealed					
% of Portion to be served by ASHP t	hat is presently cooled					
Proposed System						
Does proposed ASHP require supple	mental resistance heat?	N				
ASHP Type	Multi Zone Ductless					
ASHP Application	Whole	(the ASHP will m	eet all of the hea	ting load)		
Control Type	Integrated/Modulating					
Heating Capacity	80,000	BTU/h at 5°F	1.0	HP Sizing Ra	itio	
Energy Efficiency Ratio		EERee				
Seasonal Energy Efficiency Ratio		SEER				
Heating Season Performance Factor	12.0	HSPF				
Resulting system to be modeled	Scenario	3c				
	Multi-Zone Ductless Mu	lti-split with Int	tegrated/ Mod	ulating conti	ols sized t	o 100%
Adjusted Efficiency Values	Baseline	Energy Efficient				
SEERbaseline			EERseason.ee	10.850	с	cooling offset
EERbaseline			EERee	0.255	d	cooling slope
COPseason, baseline	1.00	2.77	COPseason,ee	-2.823	а	heating offset
FElecHeat	0.00	0.00	FElecHeat,new	1.775	b	heating slope
EFFbaseline	0.81	1.00	Fload,cooling			
FFuelHeat	1.00	0.97	Fload,heating			
		1.00	Fload,heating,Fu	uelHeat	0.69	CF
		0.97	Fload,heating,El	ecHeat	c ·	<u> </u>
	Deseline	For every Efficient	Caudia aa	11	Savings	Savings
	Baseline	Energy Efficient	Savings	Units	Ş	CO2 Lbs/yr.
Cooling Electric Use (kwn/yr.)		12.025	(12.925)	KWN		
	0	12,835	(12,835)	KVVII LAA/b	(6 075)	(14.000)
Deak Demand (kW/)	0	12,835	(12,835)		(\$ 9/5)	(14,889)
			(8.3)		(\$ 437)	
Fossil Fuel Energy Use (MIVIBIU)	154	0	154		¢ = ===	
rossii ruei Energy Use : gal.	1,119	0	1,119	gal.	\$ 3,902	25,151
Annual Energy Costs	\$ 3,90 2	Ş 1,412	\$ 2,490		\$ 2,490	10,262
Estimated Project Cost	\$ 5,275	per ton =	\$ 34,491	14	year payba	ck

Appendix D

Assumptions/Data Used to Develop Energy and Dollar Savings Figures

Building and	Occupancy I	nformation								
	2 400	anuara faat		Avg. # of	Heating	Cooling	% of base e	electricity use	resulting in	
FIOOF Area:	2,400	square reet		occupants	Setpoint	Setpoint	int	ernal heat ga	ins	
		C	lays /occupied	4	67	85	days	100%		
		nigh	ts/unoccupied	0	67	85	nights	100%		
			# of computer	1		-				
Interior lighting,	people and oc	cupied levels o	f internal loads	occur for	42.5	hours per wee	ek			
		Ele	ectricity use at	night is usually	25%	of the usual e	lectricity use d	uring day peri	ods	
	(This results in a	in average day	time kW that is	70%	of the peak m	etered kW)			
Heating Syste	em Informat	ion								
		% (of bldg. served	COP heat	EER	Heat kBTUH	Heating Fuel	Efficiency		
Primary system:	Forced Air		90%	0.81		186	Oil - No. 2	81.0%	Et	
Secondary:	Forced Air		10%	2.77	10.00	22		277.0%	Et	
	10%	of building is a	ir conditioned	Does the coolir	ng system have	e economizer?	No			
				Fuel						
Describe the dir	ect outside air	or central mak	e-up air syster	n:		Eff.		EER for DOAS		
					cfm outside a	ir, running				
					hours / week	0%	heat recovery	efficiency		
Domestic Hot	t Water									
		Fuel	Efficiency							
DHW system en	ergy type	Electricity	1%	Is there	a pump to cir	culate DHW?	No			
Hot Water usage	e is	0.5	gallons per	person	/ day for	4	persons on	250	days/year	
Weather & S	chedule Info	rmation:								
Select nearest w	eather station	for bin data:		ALBA	ANY		for TRM:	for TRM: Albany		
Base temperatu	re for heating o	legree days:	65	°F. yields	°F. yields 6,929 HDD base65			: Auto Repair		
Base temperatu	re for cooling d	egree days:	70	°F. yields	348	348 CDD base70 for 1		: Gas Heat Only		
	•									

Present Schedule for Occupied/Day HVAC setpoints

Day of week		Start	End	Hours	Da
Sun	1	12:00 AM	12:00 AM	-	
Mon	2	6:30 AM	3:00 PM	8.5	
Tue	3	6:30 AM	3:00 PM	8.5	
Wed	4	6:30 AM	3:00 PM	8.5	
Thu	5	6:30 AM	3:00 PM	8.5	
Fri	6	6:30 AM	3:00 PM	8.5	
Sat	7	12:00 AM	12:00 AM	-	
Albany, 43 hrs./we	ek			42.5	Al
				125.5	

Proposed Schedule for Occupied/Day HVAC setpoints

Day of week	Start	End	Hours					
1	12:00 AM	12:00 AM	-					
2	6:30 AM	3:00 PM	8.5					
3	6:30 AM	3:00 PM	8.5					
4	6:30 AM	3:00 PM	8.5					
5	6:30 AM	3:00 PM	8.5					
6	6:30 AM	3:00 PM	8.5					
7	12:00 AM	12:00 AM	-					
Albany, 43 hrs./week 42.								

ESTIMATE OF BUILDING LOAD COEFFICIENT & TRUE-UP TO BILLED ENERGY USE

Town of New Lebanon - Town Garage 14755 NY-22 New Lebanon, NY 12125

Building Information

Width (typical)	40	feet	Building Floor Area	2,400	sq. ft.
Equivalent Length	60	feet	Roof Area	2,530	sq. ft.
Number of Floors	1.0	floors	Gross Wall Area	2,600	sq. ft.
Avg. Floor to Floor Height	13	feet per floor	Building Volume	31,200	cubic feet
Roof or Ceiling rise is	4	feet in 12' run			

Estimate of Conductive Heat Loss

						UxA	% of BLC
<u>Surface</u>			Area	<u>R-value</u>	<u>U Factor</u>	<u>Btuh/deg. F.</u>	w/o ventilation
Roof	n/a		2,530	21.0	0.048	120	11%
Walls	82.6%	of GWA	2,147	7.0	0.143	307	27%
Glazing 1	5.5%	of GWA	144	2.0	0.500	72	6%
Glazing 2	0.0%	of GWA	0	0.9	1.111	0	0%
Doors 1	1	3x7 doors	21	2.0	0.500	11	1%
Overhead	2	12x12	288	5.0	0.200	58	5%
	Total Exterio	r Surface Area	5,130	sq.ft.		567	50%

		ACH	equiv. cfm	Btuh/deg. F.	BLC (without ve	entilation)
Est. Infiltration Rate	Occupied	1.00	520	562	1,118	Btuh/deg. F. Occupied
Est. Infiltration Rate	Unoccupied	0.25	130	140	708	Btuh/deg. F. Unoccupied
		cfm	Fraction	Btuh/deg. F.	Total BLC with	Ventilation
Est. Ventilation Rate	Occupied	0	100%	0	1,118	Btuh/deg. F. Occupied
Est. Ventilation Rate	Unoccupied		100%	0	708	Btuh/deg. F. Unoccupied

Heat Gain Estimation

Estimated Solar Gain	ted Solar Gain 1% of building heat loss during occupied periods will be met by solar gains kW # People Total BTUH Hours/wk.					
		kW	kW # People Total BTUH Hours/wk. 1.9 4 7,477 42.5			
Loads & People	Occupied	1.9	4	7,477	42.5	
	Unoccupied	0.5	0	1,629	125.5	

Heat Loss Study - continued

Town of New	Lebanon - T	own Garage			Fuel Data	Heating	Cooling			
14755 NY-22					Type:	Oil - No. 2	Electricity	Economizer?		
New Lebanon	n, NY 12125			_	Units:	gal.	kwh	No		
			Current		Unit cost:	\$ 3.488	\$ 0.076			
Heating T Set	point:	Occupied	67	deg. F.	BTU/unit	138,000	3,412			
		Unoccupied	67	deg. F.	Nom. Eff, COP	0.810	0.000	СОР		
Cooling T Set	point:	Occupied	85	deg. F.	Avg. Eff, COP	0.810	4.15	Avg. COP		
		Unoccupied	85	deg. F.			14.2	Avg. EER		
HVAC Schedu	le	Occupied	43	Hrs. per weel	k		10% of bldg. cooled			
		Unoccupied	126	Hrs. per weel	k		DOAS En	ergy Use		
Q internal gai	ns:	Occupied	7,477	Btuh		0	cfm			
		Unoccupied	1,629	Btuh			0%	heat recov. Eff.		
Q internal gains: Schedule			43	Hrs. per weel	k		Heating	0		
BLC:		Occupied	1,118	Btuh/deg. F.			0			
		Unoccupied	708	Btuh/deg. F.			0%	eff.		
							0.00	COP cool		
Current		Albany, 43 hr	s./week				0 hrs/week			
	Occupied	Unoccupied	Occ Net Heat	Unocc Net	Heating Fuel	Cooling		DOAS Heating		
Bin Mid Pt.	Hours	Hours	Loss BTUH	Heat Loss	Use gal.	Energy kwh	DOAS Hours	kBtu/vr.		
			2000 21 011	BTUH	000 80	2				
(2.5)	6	9	70,195	47,555	8	0	0	0		
2.5	12	39	64,607	44,016	22	0	0	0		
7.5	31	94	59,020	40,478	50	0	0	0		
12.5	44	156	53,432	36,939	/3	0	0	0		
17.5	90	333	47,844	33,401	138	0	0	0		
22.5	114	378	42,250	29,005	144	0	0	0		
32.5	147	527	31,080	20,324	147	0	0	0		
37.5	184	536	25,492	19,247	134	0	0	0		
42.5	143	417	19.904	15.709	84	0	0	0		
47.5	191	554	14,316	12,170	85	0	0	0		
52.5	160	436	8,728	8,632	46	0	0	0		
57.5	178	621	3,140	5,094	33	0	0	0		
62.5	248	715	0	1,555	10	0	0	0		
67.5	206	420	0	0	0	0	0	0		
72.5	151	325	0	0	0	0	0	0		
77.5	156	258	0	0	0	0	0	0		
82.5	106	161	(4,683)	0	0	3	0	0		
87.5	31	20	(10,271)	(3,399)	0	3	0	0		
92.5	7	5	(17,513)	(7,350)	0	1	0	0		
97.5	0	1	(21,789)	(10,561)	0	0	0	0		
102.5	0	0	(27,035)	(14,014)	0	0	0	0		
112 5	0	0	(32,023)	(17,552)	0	0	0	0		
112.5	0 8 760	hours	(30,211)	(21,091)	1 110		DOAS fuel use	0		
<u> </u>	8,760 nours					/		0		
	A						DOAD LOOI USE	0		

Closs check Against historic consumption											
	Historic	Calculated	Difference								
Present Annual Heating Fuel Use is	155 mmBTU	154	100% of present fuel use								

Appendix E

Clean Heating and Cooling Technology Overview

BENEFITS OF CLEAN HEATING AND COOLING (CHC) TECHNOLOGIES

Commercial building owners are becoming increasing aware of how their choice of HVAC system impacts bottom line operating costs and the environment. Most conventional heating systems either burn fuel or convert electricity into heat. CHC technologies, such as heat pumps, are different because they don't generate heat. Instead, they move existing heat energy from outside into your facility, which makes them more efficient since they deliver more heat energy than the electrical energy they consume.

There are many compelling reasons to install a CHC System in commercial buildings.

CHC systems:

- Can cost less to run than a traditional fossil fuel heating system.
- Integrate well with renewable and resilient building designs
- Offer the highest efficiency and most cost-effective space conditioning for HVAC
- Offer reduced maintenance costs because the exterior equipment is buried underground
- Offers flexible design and installation with many configurations available.
- Provides superior thermal comfort for all seasons.

TYPES OF CLEAN HEATING AND COOLING (CHC) TECHNOLOGIES

What is a Ground Source Heat Pump (GSHP)?

GSHP's are self-contained electrically powered systems that provide heating and cooling more efficiently than other types of conventional HVAC systems. This increase in efficiency is obtained due to the GSHP systems coupling with the earth's relatively stable ground temperature. For example, while the temperature of the of the outside air may vary drastically from summer to winter, the ground temperature remains relatively stable, making it an ideal heat "source" for heating and heat "sink" for cooling.

The GSHP system utilizes an electric vapor compression refrigeration cycle to exchange energy between the building load and a ground coupled loop. When in heating mode, energy is transferred from the low temperature ground loop source to the higher temperature heat sink (the load).

The system reverses during cooling, where the energy is absorbed by the ground loop.

Source: https://www.epa.gov/rhc/geothermal-heating-and-cooling-technologies

What is an Air Source Heat Pump (ASHP)?

An air source heat pump works much like a refrigerator operating in reverse. Outside air is blown over a network of tubes filled with a refrigerant. This warms up the refrigerant, and it turns from a liquid into a gas. This gas passes through a compressor, which increases the pressure. Compression also adds more heat – similar to how the air hose warms up when you top up the air pressure in your tires. The compressed, hot gases pass into a heat exchanger, surrounded by cool air or water. The refrigerant transfers its heat to this cool air or water, making it warm. And this is circulated around your facility to provide heating and hot water. Meanwhile, the refrigerant condenses back into a cool liquid and starts the cycle all over again.

Source: <u>https://www.ways2gogreenblog.com/2017/10/18/a-brief-introduction-to-air-source-heat-pumps/</u>

What is a Variable Refrigerant Flow (VRF)?

VRF systems use heat pumps or heat recovery systems to provide heating and cooling for all indoor and outdoor units without the use of air ducts. With a VRF system, your building will have multiple indoor units utilized by a single outdoor condensing unit, either with a heat pump or heat recovery system. A VRF HVAC system can heat and cool different zones or rooms within a building at the same time. If the appropriate VRF system is selected, building occupants have the ability to customize the temperature settings to their personal preferences. VRF equipment can be used in conjunction with a wide range of heating and cooling products. This means that a VRF system can be scaled to meet the climate control needs.

Source: <u>https://be-exchange.org/tech_primer/tech-primer-variable-refrigerant-flow-vrf-</u> systems/

Appendix F

Energy Savings Summaries

Energy Efficiency Measures			GHG	Electric Savings			Fuel Savings			\$ Savings & Cost			
EEM #	Measure Status	EEM Category	EEM Description	CO2e Lbs./Yr.	kWh	kW	Electric Cost Savings	Fuel Type	Fuel MMBtu Savings	Fuel Cost Savings	Total Annual Savings	Install Costs	Simple Payback (years)
EEM-1	R	Lighting	Interior Lighting Retrofit	673	1,053	2.3	\$ 377	Oil - No. 2	(3.4)	(\$ 85)	\$ 292	\$ 934	3.2
EEM-2	R	Controls	Improve Temperature Control	4,713	0	0.0	\$0	Oil - No. 2	28.9	\$ 731	\$ 731	\$ 199	0.3
EEM-3	R	Envelope	Weather-Stripping And Caulking	857	0	0.0	\$0	Oil - No. 2	5.3	\$ 133	\$ 133	\$ 500	3.8
EEM-4	R	Envelope	Insulate Building Envelope	8,935	0	0.0	\$0	Oil - No. 2	54.9	\$ 1,386	\$ 1,386	\$ 36,033	26.0
		Tot	al of Recommended Measures:	15,178	1,053	2.3	\$ 377		85.7	\$ 2,165	\$ 2,543	\$ 37,666	14.8

	Building Electrification Measures				Savings & Cost								
EEM #	Measure Status	EEM Category	Building Electrification Measure Descriptions	CO2e Lbs./Yr.	kWh	kW	Electric Cost Savings	Fuel Type	Fuel MMBtu Savings	Fuel Cost Savings	Total Annual Savings	Install Costs	Simple Payback (years)
BE-1	R	VRF	Install Clean Heating System - Air Source Heat Pump	10,262	(12,835)	0.0	(\$ 1,412)	Oil - No. 2	154.4	\$ 3,902	\$ 2,490	\$ 34,491	13.9
Total of Recommended Measures: 10,262			(12,835)	0.0	(\$ 1,412)		154.4	\$ 3,902	\$ 2,490	\$ 34,491	13.9		